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Adaptive Binary Sorting Schemes and 
Associated Interconnection Networks 

Minze V .  Chien, Member, IEEE, and A. Y a v u ~   om^, Senior Member, IEEE 

Abstract-Many routing problems in parallel processing, such 
as concentration and permutation problems, can be cast as 
sorting problems. In this paper, we consider the problem of 
sorting on a new model, called an adaptive sorting network. 
We show that any sequence of t )  bits can be sorted on this 
model in O(lg‘ 7 t )  bit-level delay using O ( H )  constant fanin 
gates. This improves the cost complexity of Batcher’s binary 
sorters by a factor of O(lg’ r t )  while matching their sorting 
time. The only other network that can sort binary sequences 
in O ( t t )  cost is the network version of columnsort algorithm, 
but this requires excessive pipelining. In addition, using binary 
sorters, we construct permutation networks with O( r )  Ig t t )  bit- 
level cost and O( Ig ’ T I  ) bit-level delay. These results provide the 
asymptotically least-cost practical concentrators and permutation 
networks to date. We note, of course, that the well-known AKS 
sorting network has O(  Ig )I ) sorting time and O(  t t  Ig t t  ) cost, but 
the constants hidden in these complexities are so large that our 
complexities outperform those of the AKS sorting network until 
17 becomes extremely large. 

Index Terms- Adaptive sorting, binary sorter, concentrator, 
permutation network, sorting network 

I. INTRODUCTION’ 
ORTING networks have received much interest because S of their widespread use in many computations and algo- 

rithms. See 121 for an in-depth treatment of sorting networks, 
and [19], [23], for recent surveys. These networks are con- 
structed by cascading constant fanin comparator switches, 
and are termed nnncrhptiile i n  that the comparisons at the 
switches are not predicated on any conditions [ 2 5 ] .  Inputs upon 
entering a sorting network are compared and exchanged at 
the comparators, depending on their relative values, as shown 
in Fig. 1 .  Two parameters that are most commonly used to 
assess the performance of a sorting network are its cost and 
depth. The cost of a sorting network is the number of constant 
fanin comparator switches that it contains, and its depth is the 
maximum number of such switches on a path from an input 
to an output. The cost and depth of the network i n  Fig. 1 are 
5 and 3, respectively. 
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Fig. I .  A four-input sorting network. 

Many models of sorting exist, but sorting networks seem 
to have been most resourceful among these in that many 
parallel sorting algorithms are adaptations of Batcher’s odd- 
even merge and bitonic sorting networks 131, 112) and the 
more recent AKS sorting network [l], [19], [20]. In particular, 
the AKS sorting network construction settled a long-standing 
question about the existence of a sorting network with O ( n  lg 
n)  cost and O(1g U) depth, and i t  had strong implications for 
the complexity of sorting on parallel computer models [14]. 
Despite its theoretical significance, however, the AKS sorting 
network is far from having any practical value, because of 
the large constants in its cost and depth complexities, and the 
problem of constructing an O ( n  Ig n )  cost and O(lg n)  depth 
sorting network with small constants remains a challenging 
open problem. 

In this paper, we examine the possibility of constructing 
sorting networks whose cost and depth complexities approach 
these expressions as best as possible. To facilitate this, we 
consider a new sorting network model, called an aduprive 
sorting network. The main difference between this model and 
a nonadaptive sorting network is that the latter is constructed 
by using only comparators, whereas an adaptive sorting net- 
work may have other components to check on conditions for 
comparing and routing its inputs through.2 Our main problem 
in this niodel is to sort an arbitrary binary sequence of ri 
elements. Apart from being significant in and of itself, sorting 
binary sequences plays quite a central role in concentration, 
permutation, and sorting problems. In fact, the concentration 
problem is equivalent to sorting binary sequences 161, and 
the permutation and sorting problems can be broken into a 
sequence of sorting steps on binary sequences. 

The well-known zero-one principle dictates that any non- 
adaptive network of comparators that sorts an arbitrary binary 
sequence also sorts any “totally ordered” set of elements [ 121. 
As such, a nonadaptive binary sorting network, i.e., one that 
sorts all binary sequences of length 71, with O ( n  Ig n)  bit- 

? A  formal definition of an adaptive sorting network model is given in the 
next section. 
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Fig. 2 .  Swapping networks. (a) Two-way swapper. (b) Four-wa.y swapper 

level cost and O(1g n.) bit-level depth (hereafter called cost 
and depth), where the constants in the order expressions are 
small, will have strong implications for sorting in general; but 
this seems highly unlikely, given the countless unsuccessful 
attempts on the problem.’ 

As an alternative, we explore in this paper the possibility of 
constructing adaptive networks to sort binary sequences within 
optimal bounds. We present three such networks: 

1 )  An adaptive binary sorting network with 0 ( 7 ~  lg n)  cost 
and O(lg n)  depth using a prefix adder scheme, 

2) An adaptive binary sorting network with O ( n  lg n) 
cost and O(1g ’ 7 1 )  depth using a multiplexed merging 
scheme, and 

3) An adaptive time-multiplexed binary sorting network 
with O(rr.) cost, O(1g’n) depth, and O(1g 3n)  sorting 
time without pipelining or O(lg ’n) sorting time with 
pipelining, all in bit level, using a time-multiplexed 
sorting scheme. 

These network constructions compete well with the binary 
versions of the best-known sorting networks. The first two 
have O ( n  Ig 7 1 )  cost that is matched only by the AKS binary 
sorting network, but with an impractically large constant. The 
third construction has O ( n )  cost, which is as good as the 
time-multiplexed network version of columnsort [ 141, in which 
the sorting steps are implemented by n/Ig’ n-input Batcher’s 
sorters and inputs are pipelined. We must note, however, 
that though the columnsort network requires inputs to each 
of its sorters being separately pipelined, our last network 
construction needs to pipeline the inputs through a single 
n / lg  n-input sorter. In addition to their low costs, the depth 
and sorting time complexities of our binary sorting networks 
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match those of Batcher’s binary sorting networks and binary 
columnsort networks. 

We also note that there exist O(n)  bit-level cost and O(lg 7 1 , )  

bit-level depth n-input Boolean sorting circuits, as reported in 
[17], [26]. These circuits cannot carry, or move the inputs 
through, however; they generate only sorted bits at their 
outputs. Therefore, they are outside the focus of this paper. 

The rest of this paper is organized as follows. Section I1 
describes our adaptive sorting network models. Section I11 
presents our binary sorting networks. Section 1V describes 
how binary sorters can be used to obtain concentrators and 
permutation networks. The paper is concluded in Section V. 

11. ADAPTIVE SORTING MODELS 

In this section, we describe the two models that we use to 
construct our networks. In tallying the costs and depths of our 
networks, it will be assumed that each of 2 x 2 switch, 2 x 1 
mulitiplexer, and 1 x 2 demultiplexer has unit cost and unit 
depth. First, we sketch the building blocks needed in these 
models. 

A.  Two-way Swapper 

A two-way swapping network, or two-way swapper, as 
shown in Fig. 2(a), swaps two halves of its inputs before 
mapping them to its outputs, when its control signal is enabled. 
An n-input two-way swapper consists of a two-way shuffle 
connection, a single stage of r ~ / 2  2 x 2 switches, a reversed 
two-way shuffle connection, and a single control signal. Its 
cost is nI2 and its depth is 1. 

B. Four-Way Swapper 

A four-way swapping network, or four-way swapper, as 

mapping them to its outputs in  any one of four ways, when 

3Here “bit-level cost” refers to the number of constant fanin logic gates, 
and “bit-level depth” is the maximum number of such gates on a path from shown in Fig. 2(b), swaps four quarters Of its inputs before 
an input to an output. 
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its select signals are set accordingly. These four swapping 
pattems are not fixed and vary with the use of a four-way 
swapper. Let 1, 2, 3, 4 denote the first, second, third, and 
fourth quarters of inputs (outputs) of the swapper. In particular, 
we will subsequently need two types of four-way swappers 
to affect the following two sets of permutations expressed 
in cycle notation: {(1)(23)(4). (1)(234), (13)(24) (134)(2)}, 
{ (1)(2)(3)(4), (1)(243), (13)(24)}. These two four-way swap- 
pers will be referred to as IN-SWAP and OUT-SWAP net- 
works, respectively. 

An n-input four-way swapper consists of a four-way shuffle 
connection, a single stage of nl4 4 x 4 switches, a reversed 
four-way shuffle connection, and two select signals. Its cost4 
is n, and its depth is 1. 

C. Multiplexers 

An (m,  1)-multiplexer is a device that can select and connect 
one of its m inputs to its only output. It can be realized by 
a balanced binary tree of lg m levels of (2, 1)-multiplexers. 
An (n,  k)-multiplexer is a device that can select and connect 
any one of n / k  groups of inputs, where each group consists 
of k inputs, to its k outputs according to the value of its 
lg (n/k)-bit select inputs, where k 5 n. An (n ,  k)-multiplexer 
can be formed by coupling k ( n / k ,  1)-multiplexers. A (16,4)- 
multiplexer is shown in Fig. 3(a). The four groups of inputs are 
identifed by the leftmost two bits of the binary codes assigned 
to the inputs; those having the same two leftmost bits are in 
the same group. The desired group of inputs can be selected by 
activating the (2,1)-multiplexers with these group identifier or 
select bits. Assuming that it is formed by coupling k ( 7 i / k ,  1)- 
multiplexers, an (n, k)-multiplexer exacts ri costs and lg ( n / k )  
depth. 

D. Demultiplexers 

A (1, mi)-demultiplexer is a device that can connect its only 
input to one of its ni outputs. A (1, m)-demultiplexer can be 

constructed by a balanced binary tree with lg ni levels of 
(1,2)-demultiplexers. A ( k ,  n)-demultiplexer is a device that 
can connect k inputs to any one of its n / k  groups of outputs 
according to the value of its Ig (n/k)-bit select inputs, where 
k 5 n. A (k,n)-demultiplexer can be formed by coupling 
k (1, n/k)-demultiplexers, in which case its cost is ri, and 
its depth is lg ( ,ri /k).  A (4,16)-demultiplexer is shown in 
Fig. 3(b). We use these four building blocks to form our two 
adaptive sorting network models. More precisely, we use the 
following models. 

Network Model A: Combinational Aduptive Sorter: The 
adaptive sorting networks in this model are constructed from 
two-way and four-way swappers, and other combinational 
circuits. Thus, all of our constructions under this model 
are combinational circuits encompassing constant fanin logic 
gates. 

Network Model B: Time-Multiplexed Adaptive Sorter: In this 
model, we use all four building blocks and assume that there is 
a global clock that times our steps for moving various groups 
of inputs through (n,  k)-multiplexer and ( k ,  m)-demultiplexer 
blocks. To improve the time bounds without increasing the 
cost bounds, we also assume that inputs can be pipelined in 
this model. The adaptive sorting networks under this model 
can be viewed as simple sequential or clocked circuits. 

111. ADAPTIVE BINARY SORTING NETWORKS 

We present three adaptive binary sorting networks, the first 
two are based on the network model A, and the third belongs to 
the network model B .  For ease of discussion, but with no loss 
of generality, we shall assume that all of our sorting networks 
use power of 2 inputs. 

A. Network 1 (Prejk Binary Sorter) 

The first binary sorting network is based on a variant of 
odd-even merge sorting network [3]. The construction of this 
sorting network for 16 inputs is shown in Fig. 4(b), and can 

jThis Cost is normalized to the number of 2 x 2 switches where the cost be extended to larger numbers Of inputs' This sorter 
of each 4 x 4 switch is roughly equivalent to the cost of four 2 x 2 switches. construction is similar to Batcher's odd-even merge sorting 
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Fig. 4. 16-input odd-even merge sorting networks. (a) Batcher’s odd-even 
merge sorting network. (b) An altemative odd-even merge sorting network. 
The stage of comparators on the left and the shuffle connection are redundant. 
They are shown to emphasize the relation between a two-way odd-even merge 
sorting network and an 1i/2-way odd-even merge sorting network. 

network (Fig. 4(a)), except that the two n/2-input sorters in 
Batcher’s network are replaced by n / 2  two-input sorters, the 
even and odd ~t,/2-input mergers are replaced by n,/2-way 
mergers, and the merging of sorted subsequences is done by 
a network called a balanced merging block [SI, 191, [24]. In 
other words, the outputs of the binary comparators in the first 
stage contain n / 2  sorted sequences, each with two elements, 
and the rest of the network merges them by using an odd-even 
merge scheme. The n/2-way mergers are actually n/2-input 
sorters, where each of the n / 2  sorted sequences to be merged 
contains a single element. (In fact, a moment’s reflection 
reveals that merging sets, each containing only one element, 
amounts to sorting them.) As stated in Fig. 4(b), the first stage 
of comparators and the shuffle connection are redundant and 
are included only to demonstrate the extension of Batcher’s 
odd-even merge sorting networks. 

Obviously, the balanced merging block that follows [:he two 
71/2-way mergers in the network of Fig. 4(b) is more complex 
than 1112- 1 two-input comparators used in Batcher’s odd- 
even merge sorter. The trade-off is that the sorting problem 
on the input side in this case is much simpler; we need only 
n/2 two-input sorters (i.e., two-input comparators) rather than 
two *n/2-input sorters. It is left to the reader to examine this 
trade-off between the sorting and merging steps by considering 
other distributions of the overall sorting problem between the 
two steps. 

For binary sequences, the balanced merging block used on 
the right side of Fig. 4(b) has O(7i Ig n) cost and O( lg n) 
depth. If the two n/2-way merging networks are recursively 
replaced by half-size odd-even merge sorting networks, then 
a binary sorting network with O(n lg2 n) cost and O(lg2 7 1 )  

depth is obtained. 
This odd-even merge sorting scheme works for arbitrary 

numbers. For binary inputs (1-bit inputs), the cost of the 
balanced merging block can be reduced from O ( n  Ig 71)  to 
O ( n )  by observing the following facts. 

Definition I: Let A, be the set of all binary sequences of 
length n starting with any multiple of 00 or any multiple of 
11, followed by any multiple of 01 or any multiple of 10, and 
that followed by any multiple of 00 or any multiple of 11. This 
is stated more precisely by the following regular expression: 

A, = J o ,  1}”n [ (( 00)* + ( 11) *) ( (01)* + ( lo)*) ( (00) * + ( 1 1) * )] . 

As an example, 0000/1010, 00/1010/ll ,  101010/11, 
00/0101/11, 11111111 are all elements of AS.11 

Remark: Note that zero multiples of 00, 01, IO, and 11 are 
allowed. Note also that any sorted binary sequence of length 
n belongs to A,. 1 1  

Theorem 1: Let Xu and XL be any two ascendingly sorted 
binary sequences of length n / 2 .  If Xu and X L  are concate- 
nated and shuffled, then the resulting sequence, X,, belongs 
to A,. 

Proof: Let 711, 712 denote the numbers of 0’s and 1’s in 
X u ,  respectively, and let ml, m2 denote the numbers of 0’s 
and 1’s in X L ,  respectively, where 0 5 711, n 2 ,  ml ,  rri2 5 n / 2 .  
If 711 5 ml, then X, must start with 711 multiples of 00, 
followed by ( m 1  - 711) multiples of 10, and that followed by 
m2 multiples of 11, which is an element of ArL. If 711 > ‘m1, 

then X, must start with n ~ l  multiples of 00, followed by 
(71,~ - ml) multiples of 01, and that followed by T/,Z multiples 
of 11, which is also an element of Anll. 

To see this statement, let Xu = 1111 and 
X L  = 0001. Then shuffling the concatenation of Xu and X L  
gives I O  10 I O / l l ,  which belongs A8. I I 

Definition 2: A binary sequence is called clean-sorted if its 
elements are all identical; i.e., they are either all 0 or all 1. I (  

Theorem2: Let Yu, and YL denote the upper and lower 
halves of outputs after the first stage of n / 2  comparators in the 
balanced merging block of the network in Fig. 4(b). For any 
binary sequence Z in A, that enters the inputs of the balanced 
merging block, one of YLT and YL must be clean-sorted, and 
the other must contain a binary sequence that belongs to A,z/2. 

Proof: Consider and arbitrary binary sequence Z in A,. 
Let Z,! Zt, and 2, denote the three parts of 2, respectively, 
as given in Definition 1, and let k,, kb and k,. denote the 
numbers of elements in Z,, Zt, and Z,, in that order. We have 
0 5 k,,k,,,k,. 5 n,, and consider two cases. 

Case (I): If kt, = 0, then, obviously, one of YLr and YL 
must be clean-sorted. 

Case (2): If kb # 0, then we consider two cases. 
Case (2.1): If k ,  2 5 and k,. < $, then Yu must be all 0’s 

and YL must contain a binary sequence that belongs to A n p .  
Likewise, if k ,  < 5 and k ,  2 5, then YL must be all 1’s and 
YLr must contain a binary sequence that belongs to A,p. 

Example I :  
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Fig. 5 .  A 16-input adaptive binary sorting network using prefix adder scheme 

Case (2.2): If both X;, < and IC,  < :, then the elements 
of Z b  cannot all be contained in one half of the inputs of 
the merging network. Let Zbll and Zbl be the two px t s  of 
Zb in the upper and lower halves of inputs. Let l i b l L  and kl,l 

denote the numbers of elements in Zbu and Zbl, respectively. 
We consider three cases. 

Case (2.2.f): If kbl = kbur then after the first stage of 
comparators, the 1’s are interchanged with O’s, and Yri must 
be all O’s, and YL must be all 1’s. 

Case (2.2.2): If kbl > k b u ,  then after the first stage of 
comparators, Yc must be all O’s, and YL must contain a binary 
sequence that belongs to 

Cuse (2.2.3): If kt,l < l i b u ,  then after the first stage of 
comparators, k; must be all 1 ’s, and Yu must contain a binary 
sequence that belongs to A,,/2. 1 1  

To illustrate this statement. consider Ihe se- 
quence obtained in Example I ,  i.e., 101010/11. Let this be 
the value of 2. After subjecting 2 to the merging block, we 
obtain Yc; = 1000 and YI, = 1111. Thus, one of IT[; arid YL 
is clean-sorted, and the other belongs to Aall. 

Given Theorem 2, the balanced merging block can be 
simplified by devising a circuit that detects which half of 
outputs is clean-sorted after the first stage of 71/2 comparators 
in the balanced merging block, and then merges only that half 
that is not sorted. We can construct this circuit, which we 
call a patch-up network, recursively, as shown in Fig. 5 for 
’11 = 16, because by Theorem 2, the unsorted half belongs to 
A71/2. The detection of the unsorted half of outputs is carried 
out by a simple lg Sri-bit prefix adder that gives the count of 
the number of 1’s in the entire input sequence. I t  does this 
by recursively adding the numbers of 1’s in the two half-size 
input sequences, as indicated in the figure. 

The patch-up network is recursively constructed from a 
hall-size patch-up network, one stage of comparators in a 
balanced merging block, and some swapping networks. The 
comparators move the 0’s in the lower half up and the 1’s in 
the upper half down whenever the compared bits are different. 

Example 2:  

As implied by Theorem 2, after the comparator stage, at least 
one half of outputs will be clean-sorted, and the other half 
must be a sequence that belongs to .A,,+. By examining the 
most significant bit of the result from the prefix adder, we can 
determine if the number of 1’s is greater than or equal to n / 2 .  
If  so, then the lower half of outputs must be clean-sorted, and 
we have the upper half left unsorted. Otherwise, the lower 
half of outputs must be unsorted, and the upper half must be 
clean-sorted. 

The selection of the unsorted half of outputs is carried out 
by an n-input, two-way swapper. The swapper network uses 
the most significant bit of the sum from the prefix adder as a 
select input to channel the unsorted half of outputs to the next 
level of the patch-up network, which, by induction, is assumed 
to sort any binary sequence that belongs to If its select 
input is 0, then the inputs are connected to the outputs straight 
across. If it is I ,  then the upper half of inputs is connected 
to the lower half of outputs, and the lower half of inputs is 
connected to the upper half of outputs. 

Once the unsorted half is selected and sorted by the patch- 
up network, then, if the select input of the two-way swapper 
in the last stage is I ,  the outputs of the patch-up network are 
switched to the upper half of the network’s outputs; otherwise, 
they are connected to its lower half of outputs. Given that the 
half-size patch-up network sorts its inputs onto its outputs, 
it is easy to verify that the swapper networks operating as 
described will produce a sorted sequence. 

Corollary,: The network in Fig. 5 (its n-input version ) sorts 
any binary sequence of ri elements in ascending order. 

The proof immediately follows from Theorems 
1 and2.11 

Let C(n)  and D ( n )  denote the bit-level cost and depth of 
the network, respectively. Directly from Fig. 5, we have the 
following equation: 

Prooj 
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16-input Mux-merger 

Fig. 6. A 16-input adaptive binary sorting network using multiplexed merging scheme. 

where C,(lg n )  and D,(lg n)  denote the cost and depth of a 
Ig n-bit prefix adder, and C,(n) and D p ( n )  denote the cost 
and depth of the patch-up network. The cost and depth of a Ig 
ri-bit prefix adder are 3 lg 71 and 2 Ig lg n, respectively [SI. 
The cost and depth of the patch-up network can be computed 
from its recursive construction as follows: 

(3) 
(4) 

where the 3n/2 term accounts for the bit-level cos! of the 
comparators, and the two-way swappers. The solutions of 
these recurrences with Cp(2) = 1 ,0 , (2 )  = 1 give C ; ( n )  5 
3n,Dp(71) 5 Ig Ti. 

Substituting the cost and depth expressions for the prefix 
adder and patch-up network into (1) and ( 2 ) ,  and solving 
the recurrence? with C ( 2 )  = 1 and D(2)  = 1, shows that 
the network in Fig. S has 3n lg n. + O(lg2 I ! )  cost and 
3 lg2 71 + 2 Ig ri lg Ig 

C,(n) = 3 n / 2  + C p ( n / 2 )  
Dp(71) = 3 f D , ( T L / ~ ) ,  

depth, respectively. 

B. Network 2 (Mux-Merger Binary Sorter) 

Although the binary sorter just described has O(n Ig r i )  

cost, the use of a prefix adder could make its implementation 
cumbersome. Our second binary sorting network, called a 
mux-merger binary sorter, eliminates the need for a prefix 
adder. 

Dejnition 3: A binary sequence is called bisorted if each 
of its two halves is sorted.11 

Theorem 3: If a bisorted binary sequence is cut into four 
equal-size subsequences, then at least two of the subsequences 
will be clean-sorted, and the other two, when concatenated, 
will form a bisorted sequence. 

L,et X ,  denote any bisorted binary sequence of 
size r i .  Let X,,1, X q 2 .  X q 3  and X,, denote the four quarters 
of X ,  from top to bottom, respectively, and let .‘iu and X L  
denote the upper and lower halves of X,. (Refer to Fig. 6.) 
The proof of the statement requires checking out four cases 
that are identified with the binary values of the uppermost 
elements of X q 2  and Xq4.  If there are more 0’s than 1 ’ s  in 

Proqt 

X ~ I ,  then the uppermost element of X q 2  must be 0, Xql must 
contain all O’s, and X42 must be a sorted sequence of size 
n/4. On the other hand, if the uppermost element of X,z is I ,  
then there are more 1’s in XI;, and hence X42 must contain all 
l’s, and X,1 must be a sorted sequence of size n / l .  Similar 
statements hold for Xq3 and Xq4. Therefore, at least two of 
X,1, X,z. X,3 and Xq4 must be clean-sorted, and the other 
two must form a bisorted sequence when concatenated.[ I 

Example 3: To illustrate this theorem, consider the bisorted 
sequence 0001/0001. Cutting it into four equal-size subse- 
quences 00, 01, 00, 01 reveals that two of the four subse- 
quences are clean-sorted, and the other two, when concate- 
nated, give 0101, which is a bisorted sequence. ) I  

If a binary sequence of ‘ri inputs is bisorted using two n / 2  
input binary sorters, then Theorem 3 provides a way to identify 
the two quarters that form a bisorted sequence of size n / 2  
when concatenated, as well as the all-0 or all-I quarters. The 
network in Fig. 6 is constructed based on this fact, where the 
mux-merger, enclosed by the rectangle in dash lines, merges 
the bisorted sequence at the outputs of the two sorters into a 
sorted sequence. 

Table 1 lists the possible patterns of bisorted sequences and 
shows how the mux-merger selects the quarter-size subse- 
quences for each The variable entries in the table 
denote various points in the network, as marked in Fig. 6. As 
described in  the proof of Theorem 3, the middle two bits of 
the two sorted halves of outputs Xlj  and X L  can be one of 
four binary patterns, 00, 01, IO, 1 1 .  For each of these, the 
patterns of X,1, X,z, Xq3, and Xq4 are uniquely determined, 
and the selections of the quarters can be made accordingly, 
as shown in the table. Furthermore, because the concatenated 
two quarters form a bisorted sequence, the same mux-merge 
process can be applied recursively. The selections described in 
the table can be realized by using Ti-input, four-way IN-SWAP 
and OUT-SWAP circuits, with their select control described 
as in the table. 

5The symbol * used in the table denotes a concatenation operator 
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TABLE I 
BEHAVIOR OF MUX-MERGER 

Fig. 7. 

IN-SWAP select OUT-SWAP select Select 
inputs Input pattern 

00 S,I and X,:C are all O's, 
.Y42 * AWq4 is bisorted 

,\-,I is all O's, S,,1 is all l's, and 
>Yqz * S,:i is bisorted 

S,I * S y 4  is bisorted, S,z is all 
I's, and S,.T is all 0's 

S,1 t S,S is bisorted, X 4 2  and 
,Y,d are all 1's 

01 

10 

I 

n-input k-way Mux-merger 

An rc-input adaptive binary sorting network using a time multiplexing rcheme and a I.-way mux-merger. 

The entire sorting network can be constructed by using IN- 
SWAP and OIJT-SWAP circuits if the half-size sorters in Fig. 
6 are recursively replaced by the same sorter construction. The 
cost and depth of this binary sorting network construction can 
be expressed as follows: 

C ( n )  = 2C(r1/2) + C,(n) 
D ( n )  = D(i1/2) + D,,(n). 

( 5  1 
(6) 

where C ( n )  and D ( n )  denote the cost and depth of the entire 
network, respectively, and Cm(71) and D,(n) denote the cost 
and depth of the mux-merger. Given that an n-input IN-SWAP 
or OUT-SWAP circuit exacts n cost and unit delay, and given 
that it is easy to check that if the mux-merger is constructed 
recursively, then C,,(n) = 471 and Dm(7h) = 2 Ig n. Solving 
the above recurrences with C(2) = I, and D ( 2 )  = 1 gives 
C(71) = 471 Ig 71 and D ( n )  = 2 Ig n. 

C. Network 3 (Fish Binary Sorter) 

The binary sorters described earlier both have ()(Ti, Ig n)  
cost. To further reduce the cost, the network shown in Fig. 7 
(called the fish binary sorter because of its resemblance to 

fish) can be used. In this network, we use a time-multiplexing 
scheme that was proposed in [I51 to obtain compact permu- 
tation networks. The idea is to multiplex the binary inputs, 
in time, through a binary sorting network with a smaller 
number of inputs. Any binary sorting network including those 
described in the previous subsection can be used in this 
kind of multiplexed sorting. The input sequence is first ar- 
bitrarily divided into k groups of ,n/k elements. Each group 
of inputs is run through an ( S r i , ,  n/k)-multiplexer ((n,  7h/k)- 

MUX) sequentially, and sorted by an n/k-input binary sorter. 
The sorted n/k-element sequences are then moved through 
an ( n / k ,  n)-demultiplexer ((71/k, n)-DEMUX) circuit to the 
inputs of an 71-input k-way merging network, where the first 
n / k  inputs of the merging network are occupied by the 
first sorted n/k-element sequence, the second n / k  inputs are 
occupied by the second sorted ,n/k-element sequence, and so 
on. 

All that remains to be done is to give a construction for an 
winput, k-way merger. For this, we first generalize the notion 
of a bisorted binary sequence. 

Dejinition 4: A binary sequence is called clean k-sorted if 
it consists of k equal-size sorted binary subsequences. For 
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16-input k-SWAP 

Fig 8 An example 5howing the operations of a 16-input tour-widy mux-merger. 

example, for k = 4, l l l l / O O O l / O O l l / O l l l  is a 4-sorted 
sequence. I I 

Definition 5: A k-sorted binary sequence is called k -sorted 
if each of its k equal-size sorted binary subsequences is clean- 
sorted; i.e., each contains only 0’s or only 1’s. For example, for 
k = 4. 11 ll/OOOO/~~OO/llll is a clean 4-sorted sequence. I ]  

Theorem 4: If, in a k-sorted binary sequence, each of the k 
equal-size sorted binary subsequences is cut into two half-size 
subsequences, then at least k of the half-size subsequences will 
be clean-sorted, which, if concatenated, will fomi a clean k- 
sorted sequence, and the remaining k: half-size subsequences, 
when concatenated, will form a k-sorted sequence. 

Prmp The proof is a direct extension of the proof of 
Theorem 3.11 

Exarnple 4: To illustrate the theorem, consider the 4-sorted 
sequence, 1 I 1  1/0001/001 1/01 I I .  Cutting each subsequence 
in half gives 1 I ,  11 ,  00, 01, 00, 1 I ,  01, 1 I .  Of the eight 
subsequences, six (more than half) are clean-sorted. Putting 
1 1, 00, 1 I ,  1 1 together, we get a clean 4-sorted sequence, and 
the other four form a sequence 11/01/00/01 that is 4-sorted. 

Using ‘Theorem 4, we can then extend the two-way mux- 
merger to a k-way mux-merger. In an 71-input, k-way mux- 
merger, a k-sorted input sequence of size 71,  which consists of 
k-sorted subsequences each of size n / k ,  is tirst separated into 
two n/‘L-bit sequences by perfomling what is called a k-SWAP 
operation using k n / k  input two-way swappers. By cor necting 
the middle bit of each of the k sorted subsequences as the 
select signal, each of these I;  7r/k:-input two-way swappers 
sends the clean-sorted halves up and the other halves down. 
As a result, the upper n /2  outputs of the n input k-swapper 
consist of  k clean-sorted subsequences, each of size n/2k, 
and thus ibrm a clean k-sorted sequence. Also, the lower 71,/2 
outputs consist of k sorted subsequences of size 7 e / 2 k ,  and 
form a kxorted sequence of size r ~ / 2 ,  

Since the upper n/2-size sequence is clean k-sorted consist- 
ing of k clean-sorted subsequences of size n / 2 k ,  by sorting 
each leading bit of these subsequences and then sending each 
subsequence to its corresponding sorted position, a sorted 
output can be obtained. These steps can be carried out by 
employing a k-input sorter, an (,r1,/2> n/2k)-multiplexer, and 
an (n/2k, n/2)-demultiplexer. These circuits are collectively 
referred to as an n/2-input, k-way clean sorter in Fig. 7. 

Assuming that the lower 11/2 outputs of the k-swapper can 
be merged recursively, we can use an n-input two-way mux- 
merger at the last stage to merge these two sorted n/2-bit 
sequences and obtain a sorted output. As an example, Fig. 8 
illustrates the operation of an ri-input k-way mux-merger for 
11 = 16 and k = 4. The operation o f  the n/2-input, k-way 
clean sorter is also illustrated in Fig. 9, for TL = 16 and k = 4. 

The cost C ( n ,  k )  and depth D(TI, ,  k )  of this binary sorting 
network can be expressed as follows: 

where C;(ri. u / k )  and Dci(n,  n / k )  denote the cost and depth 
of the (11, n/k)-multiplexer and (n /k .  n)-demultiplexer cir- 
cuits combined together; C S ( n / k )  and D,(n /k )  denote the 
cost and depth of the n/k-input binary sorter; and CknL(n, k) 
and D k n ,  ( a ,  k )  denote the cost and depth of the n-input k-way 
mux-merger. It follows from Fig. 7 that the following is true: 
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where Cs\.v.;lp 1:n) and D s ~ . k p  (n)  denote the cost and depth 
of the ri-input k-swapper; C,.(n/2, k )  and D,,(r2/2, kj denote 
the cost and depth of the n/2-input k-way clean-sorter; and 
Cn,(n) and D,(n) denote the cost and depth of the a-input 
two-way mux-merger, respectively. 

Since an 7i-input k-swapper can be constructed with k n/k- 
input two-way swappers, its cost Cs\vA;Ar(n) is 71/2,  and its 
depth Dsui~p(7i) is 1. As illustrated in Fig. 9, the n / 2 -  
input k-way clean-sorter can be constructed with a k-input 
binary sorter, sorting the leading bits of each of the I; clean- 
sorted subsequences, and with a dispatching circuit to send 
each subsequence to its sorted position. This circuit uses an 
( 7 1 / 2 ,  n/2k)-multiplexer, and ( n / 2 k ,  n/2)-demultiplexer and 
a ( k ?  1)-multiplexer, and thus exacts 11 + k cost and 3 Ig k 
depth. If the k-input binary sorter is realized by the mux- 
merger binary sorter, then its cost and depth will be ilk: Ig k 
and 2 lg2k, respectively. Finally, the cost and depth of the 
zn-input, two-way mux-merger are 471 and 2 Ig n, respectively. 
Substituting all these into (9) and (10) yields the following 
equations: 

CkTn(n, k )  = n / 2  + 4k Ig k + 71 + k 

+ Ckm(l1/2, k )  + 471 ( 1 1 )  

(12) 
1 1 7 1  

2 
= - + 4k: Ig k + k + CkTrL(71/2, A:)  

~ k ~ ( n ,  I C )  = 1 + 111ax((2 lg2 k + 3 Ig k ) .  

okm(n,/2,  k ) )  + 2 Ig T?, (13) 
5 1 + Dkn,(71/2, k )  + 2 Ig n,. (14) 

Now suppose that the n-input, k-way mux-merger is con- 
structed by recursively decomposing its n/2-input, k-way 
mux-merger component until it reduces to have k inputs, 
and the k-input, k-way merger is realized by a k-input mux- 
merger binary sorter. This amounts to solving the above 
recurrences with the boundary condition C k m ( k : .  k )  = 4k Igk 
and Dkm(k:, k )  = 2 lg2 k .  which yields the following equa- 
tion: 

n ri 
k k 

CkTn(7L, k )  = 1171  - I l k  + k Ig - + 4k Ig k Ig - + 4k Ig k' 

(15) 

(16) 
ri 71 

Dkm(n, k )  5 ~g k: + 2 lg n ~g - + 2 Ig2 k:. 

Substituting these into (7) and (8), we find the following: 
k 

71 n 71 
G(71, k )  5 2 7 1  .f 4- Ig - + 1171 + k lg - 

k k  k 
I1 

f 4 k  Ig k Ig - + 4k Ig k (17) k 
71 

D(7b: k )  5 2 Ig k + 2 lg2 !! + Ig - + 2 Ig 71, Ig t 2 lg2 k ,  k k k 
(18) 

and minimizing these expressions with respect to k ,  we obtain 
the following equations: 

c(71, Ig 7'1) 5 1 7 7 ~  f 5 lg2 71, 1g Ig TI, + 4 Ig 'I1 Ig Ig 'I1 = < ) ( ' U , ) .  

(19) 
0 ( 7 1 ,  Ig 7 1 )  5 2 Ig 71 + 2 lg2 71 f lg 11 + 2 lg2 71 (20) 

= O( lg2 n,). (21) 

It is obvious that the sorting time, T ( n , k ) ,  can be similarly 
determined as follows: 

and letting k = Ig 'ri gives the following: 

The sorting time can be reduced to O( lg2 n) by noting that the 
k groups of n / k  inputs can be pipelined through the ~rlk-input 
sorting network. In this case, the sorting network is viewed as 
a lg2 n / k  segment pipeline, where each segment is a constant 
fanin. unit delay circuit. Therefore, the sorting time 1k,,,,(/i, k )  
is given by the following equation: 

~ ~ i ~ ( n ,  k )  = o(ig2 + o(x:) + o ( l g  k )  + O ( I ~  S r i  ~g n / ~ . ) ,  
( 2 5 )  

where the O(1g2 (71/k) and O(lg A:) terms account for the time 
for the first group of n / k  elements to exit the pipeline, and 
the O ( k )  term accounts for the time that the remaining k - 1 
groups of n / k  elements need to get through the pipeline. The 
O(lg 71, Ig k )  term is the merging time. Letting A: = Ig n gives 

We note that a time-multiplexed network version of the 
columnsort algorithm proposed by Leighton in [I41 has the 
same bit-level cost of O ( 7 1 , ) .  The columnsort algorithm, where 
n inputs are divided into s columns and r' rows, consists of 
eight steps, four of which sort columns of inputs; the other 
four steps rearrange the sorted columns of inputs. It was 
mentioned in [ 141 that a columnsort sorting network with O ( n )  
processors could be obtained if one uses an ,ti./ Ig n-input 
AKS sorter to sort each of Ig n columns of n/ lg ri elements. 
Because the AKS network is not practical, one can use an 
n/ lg2 71,-input Batcher's sorter to sort each of lg2 n columns 
of 71/  lg2 n elements and also obtain a sorting network with 
O ( n )  cost. In this version of columnsort network, however, the 
inputs must be mutliplexed into smaller size sorters, and the 
outputs from the sorters must be demultiplexed. This requires 
additional circuits whose cost would be comparable to the cost 
of the ( 7 1 :  k)-multiplexer and ( A ; ,  rr)-demultiplexer used in our 
fish binary sorter. The sorting time of this time-multiplexed 
columnsort network would be O( Ig4 ,ti) without pipelining 
and O( lg2 n )  with inputs pipelined. We note that the pipelined 
version of this network requires that the data be separately 
pipelined through each of the four sorters in its construction. 
In contrast, our last network construction needs to pipeline the 
inputs through only a single n/ Ig n-input sorter. 

I t  should also be noted that without time-multiplexing, a 
practical binary columnsort network, e.g., one using Batcher's 
sorters, would require lg2 n (n /  lg2 71)-input Batcher's 
sorters in  its construction, resulting in a bit-level cost 
of O ( n  lg2 n).  In contrast, the mux-merger binary sorter 
described in the previous subsection would have only a 
bit-level cost of O(7). Ig 7 1 ) .  

k 

y;,ip(T?,> Ig n.) = (>(lg2 'Tl). 
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I I ~~ 

8-input &way Clean Sorter 
Fig. 9. An example Fhowing the operations of an eight-~nput foJr-way clean sorter 

Iv. CONCENTRATORS AND PERMUTATION 
NETWORKS USING BINARY SORTERS 

Concentration and permuting are two communicatiori prob- 
lems that frequently arise in parallel computations Both 
problems can be solved efficiently by using binary sorters. 
Formally, an (n,m)-concentrator is a network with 71 inputs 
and m outputs, m 5 71, that can map any T 5 m of its inputs to 
some r distinct outputs, e.g., the first 7' outputs, 1 5 T 5 (rm. 
It should be easy to see that a binary sorter does form an 
(n,  n)-concentrator. All that is needed is to tag the inputs to 
be concentrated with 0's and tag the remaining inputs with 1 's. 

Concentrators have been reported in the literaturrz. The 
expander-based constructions reported in [ 2 ] ,  [ IO],  [ 161, [21], 
[22  1, provide O(n)  cost concentrators, but their conceritration 
time is not known. The ranking tree-based constructions given 
in 11 I ] ,  1131, exact O(71 lg2 71) cost. The prefix-adder and 
mux-merger binary sorters described in Section 111 give ( 7 1 , 7 1 ) -  

concentrators with O(71 lg 71) cost and O(lg2 n)  depth. The 
fish binary sorter provides a time-multiplexed concentrator 
with O(71) cost and O(lg2 71) concentration time. The only 
other time-multiplexed concentrator that matches these cost 
and time complexities is the network version of the columnsort 
algorithm [ 141, as we mentioned in the previous section. 

Binary sorters can also be used to form permutation net- 
works. Much work on permutation networks has been reported 
in the literature. The well-known Benes network [4] has 
O ( n  lg 11) cost and O(lg 71) depth, though realizing arbitrary 
permutations on this network requires O((lg4 n)/lg Ig 71) time 
on an 71 Ig 7~ processor, perfect shuffle, or cube-connected par- 
allel computer [ 181. Batcher's sorting networks [ 3 ]  and those 
that appeared in [7], [13], can also be used for permutation 
switching, but they require O ( n  Ig3 71) cost and O(lg3 7 1 )  

permutation time in bit-level. 
More recently, Jan and O r u ~  proposed a permutation net- 

work with O(71 lg2 71) cost and O(lg2 71 lg Ig 71) permutation 
time in bit-level [ l l ) .  This permutation network, called a 
radix permuter, is recursively constructed from a distributor, 
two concentrators, and two half-size radix permuters. Our 
binary sorters can be used to replace the distributor and 
two concentrators in this construction, because by sorting the 
leading bits in the destination address, a binary sorter can 
distribute the inputs to the upper and lower half-size radix 
permuters, as shown in Fig. 10. If the fish binary sorter is used 
in this construction, then the cost CTp(n)  and depth D,,(71) 

of this permutation network are given as follows: 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:21 from IEEE Xplore.  Restrictions apply.



CHlEN AND ORUC: ADAPTIVE BINARY SORTING SCHEMES 57 I 

Fig. IO. An 11-input permutation network ucing adaptive binary sorters. 

TABLE I1 
COMPLEXITIES OF VARIOUS PERMUTATION NETWORK 

DESIGNS IN BIT Lt:VEI. 
~~ 

Construction Co\t Depth Permutatirin time 

D,.,](n) = ( I (  lg2 7 ~ )  + 0 , . , ( 7 ~ / 2 )  = O( lg3 71). (27) 

The permutation time of this network is the same as its depth. 
It must be pointed out that because the fish binarq sorter 

relies on time-multiplexing, the radix permuter that is obtained 
by replacing concentrators with fish binary sorters is a packet- 
switched network. On the other hand, radix permuters obtained 
by replacing ccincentrators with either prefix binary sorter or 
mux-merger binary sorter give a circuit-switched permutation 
network. 

Table I1  lists the complexities of this permutation network 
along with those of other permutation networks reported 
earlier. The cost of the Benes network includes the cost of the 
O(,// ,  lg 71)  processors in its routing model [ 181, where the Ig ‘ri 

factor in  the cost expression accounts for the bit-level cost of 
each processor. The table reveals that the network given in this 
paper has the smallest order of cost complexity, and that its 
depth and permutation time match the depths and permutation 
times of those networks given in [3] and [13], and also that 
they are slightly higher than the depth and permutation time 
of the network obtained in [ 1 I ] .  

V. CONCLUDING REMARKS 

The paper has introduced adaptive sorting networks and 
presented an in-depth analysis of sorting binary sequences 
on such networks. The results are rewarding in thal under 

the adaptive sorting network model, we were able to obtain 
O ( 7 1 .  Ig 71) bit-level cost binary sorting networks, and O(n) bit- 
level cost time-multiplexed binary sorting networks, all with 
O(1g2 n )  bit-level sorting time. 

The paper also described the first winput permutation 
network with 0 ( 7 ~  Ig n) bit-level cost and O(lg3 * / I . )  bit-level 
routing time. A permutation network with O ( 7 1  lg2 n) bit-level 
cost, but with a much simpler design, can also be obtained by 
using the mux-merger sorter described in the paper. 

An attractive feature of all of the network constructions in 
the paper is that the constants in the cost, depth, and time 
complexity expressions are very small (5  17) as compared to 
the constants in the complexities of expander-based construc- 
tions, such as the AKS network. A worthwhile extension of 
these results will be to construct a binary sorter with O ( n )  
cost and O(lg n )  sorting time where the constants in the order 
of complexity expressions are small. 
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